Low-Rank Matrix Approximation with Weights or Missing Data Is NP-Hard

نویسندگان

  • Nicolas Gillis
  • François Glineur
چکیده

Weighted low-rank approximation (WLRA), a dimensionality reduction technique for data analysis, has been successfully used in several applications, such as in collaborative filtering to design recommender systems or in computer vision to recover structure from motion. In this paper, we prove that computing an optimal weighted low-rank approximation is NP-hard, already when a rank-one approximation is sought. In fact, we show that it is hard to compute approximate solutions to the WLRA problem with some prescribed accuracy. Our proofs are based on reductions from the maximum-edge biclique problem, and apply to strictly positive weights as well as to binary weights (the latter corresponding to low-rank matrix approximation with missing data).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unifying Low-Rank Models for Visual Learning

Many problems in signal processing, machine learning and computer vision can be solved by learning low rank models from data. In computer vision, problems such as rigid structure from motion have been formulated as an optimization over subspaces with fixed rank. These hard -rank constraints have traditionally been imposed by a factorization that parameterizes subspaces as a product of two matri...

متن کامل

Low-Rank Approximation and Completion of Positive Tensors

Unlike the matrix case, computing low-rank approximations of tensors is NP-hard and numerically ill-posed in general. Even the best rank-1 approximation of a tensor is NP-hard. In this paper, we use convex optimization to develop polynomial-time algorithms for low-rank approximation and completion of positive tensors. Our approach is to use algebraic topology to define a new (numerically well-p...

متن کامل

Recovery guarantee of weighted low-rank approximation via alternating minimization

Many applications require recovering a ground truth low-rank matrix from noisy observations of the entries. In practice, this is typically formulated as a weighted low-rank approximation problem and solved using non-convex optimization heuristics such as alternating minimization. Such non-convex techniques have few guarantees. Even worse, weighted low-rank approximation is NP-hard for even the ...

متن کامل

On the Complexity of Robust PCA and ℓ1-norm Low-Rank Matrix Approximation

The low-rank matrix approximation problem with respect to the component-wise l1-norm (l1LRA), which is closely related to robust principal component analysis (PCA), has become a very popular tool in data mining and machine learning. Robust PCA aims at recovering a low-rank matrix that was perturbed with sparse noise, with applications for example in foreground-background video separation. Altho...

متن کامل

High-Rank Matrix Completion and Clustering under Self-Expressive Models

We propose efficient algorithms for simultaneous clustering and completion of incomplete high-dimensional data that lie in a union of low-dimensional subspaces. We cast the problem as finding a completion of the data matrix so that each point can be reconstructed as a linear or affine combination of a few data points. Since the problem is NP-hard, we propose a lifting framework and reformulate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2011